The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

نویسنده

  • Jaqueline M. R. Vieira
چکیده

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge dataset configurations. Keywords—Brazil, classifiers, data-mining, Image Segmentation, oil well visualization, classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and ranking risks of horizontal directional drilling for oil & gas wells by using fuzzy analytic network process, a case study for Gachsaran oil field wells

Risk ranking of Horizontal Directional Drilling (HDD) for gas and oil wells is a key criterion in the project feasibility, pricing and for introducing a risk management strategy that aims to reduce the number of failures in the installation phase and its negative consequences. HDD is currently widely used in drilling wells in Iran, but research in the area of identification and risks ranking of...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Managed Pressure Drilling Using Integrated Process Control

Control of wellbore pressure during drilling operations has always been important in the oil industry as this can prevent the possibility of well blowout. The present research employs a combination of automatic process control and statistical process control for the first time for the identification, monitoring, and control of both random and special causes in drilling operations. To this end, ...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Structural and fracture analysis using EMI and FMI image Log in the carbonate Asmari reservoir (Oligo-Miocene), SW Iran

Assessment of the reservoir structure and determination of theinsitu stress direction arenecessary in oil production optimization andfield development. Today, the application of reservoir software and Image logsplay a central role in resolving this problem. Electricand ultrasonic imaging tools record vast amounts of high-resolution data within the borehole wall. This enables the geoscientists t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014